A chemical oxygen generator is a device releasing oxygen created by a chemical reaction. The oxygen source is usually an inorganic superoxide, chlorate, or perchlorate. A promising group of oxygen sources are ozonides. The generators are usually ignited mechanically, by a firing pin, and the chemical reaction is usually exothermic, making the generator a potential fire hazard. Potassium superoxide was used as an oxygen source on early manned missions of the Soviet space program, for firefighters, and for mine rescue.
Contents |
Commercial aircraft provide emergency oxygen to passengers to protect them from drops in cabin pressure. Chemical oxygen generators are not used for the cockpit crew. In narrow body airliners, for each row of seats there are overhead oxygen masks and oxygen generators. In wide body airliners, such as the DC-10 and IL-96, the canisters and oxygen masks are mounted in the top portion of the seat backs, since the ceiling is too high above the passengers. If a decompression occurs, the panels are opened either by an automatic pressure switch or by a manual switch, and the masks are released. When the passengers pull down on the mask they remove the retaining pins and trigger the production of oxygen.
The oxidizer core is sodium chlorate (NaClO3), which is mixed with less than 5 percent barium peroxide (BaO2) and less than 1 percent potassium perchlorate (KClO4). The explosives in the percussion cap are a lead styphnate and tetrazene mixture. The chemical reaction is exothermic and the exterior temperature of the canister will reach 260 °C (500 °F). It will produce oxygen for 15 to 20 minutes.[1][2] The two-mask generator is approximately 63 mm (2.5 in) in diameter and 223 mm (8.8 in) long. The three-mask generator is approximately 70 mm (2.8 in) in diameter and 250 mm (9.8 in) long.
Accidental activation of improperly shipped expired generators caused the ValuJet Flight 592 crash. An ATA DC-10, Flight 131, was also destroyed while parked at O'Hare Airport, on August 10, 1986. The cause was the accidental activation of an oxygen canister, contained in the back of a broken DC-10 seat, being shipped in the cargo compartment to a repair station. There were no fatalities or injuries because the plane contained no passengers when the fire broke out.
A chlorate candle, or an oxygen candle, is a cylindrical chemical oxygen generator containing a mix of sodium chlorate and iron powder. When ignited, the mixture smolders at about 600 °C (1,112 °F), producing sodium chloride, iron oxide, and about 6.5 man-hours of oxygen per kilogram of the mixture. It releases oxygen at a fixed rate. The mixture has an indefinite shelf life if stored properly; candles stored for 20 years have shown no decrease in oxygen output. The oxygen is released by thermal decomposition. The heat is supplied by the burning iron. The candle must be wrapped in thermal insulation to maintain the reaction temperature and to protect surrounding equipment.
Potassium and lithium chlorate, and sodium, potassium and lithium perchlorates can also be used in oxygen candles.
An explosion caused by one of these candles led to the deaths of two Royal Navy sailors on HMS Tireless, a nuclear-powered submarine, under the Arctic on March 21, 2007. The candle had become contaminated with hydraulic oil, which caused the mixture to explode rather than burn.[3]
Advances in technology have provided industrial oxygen generator systems for use where air is available and a higher concentration of oxygen is desired. Pressure swing adsorption (PSA) incorporates a material called molecular sieve for gas separation. In the case of oxygen generation a zeolite-based sieve forces preferential adsorption for nitrogen. Clean, dry air is passed through the sieve beds on the oxygen generator, producing an oxygen-enriched gas. Nitrogen separation membrane equipment is also used.
Chemical oxygen generators are used in aircraft, breathing apparatus for firefighters and mine rescue crews, submarines, and everywhere a compact emergency oxygen generator with long shelf life is needed. They usually contain a device for absorption of carbon dioxide, often a filter filled with lithium hydroxide; a kilogram of LiOH absorbs about half a kilogram of CO2.